Cloning and characterization of FAD1, the structural gene for flavin adenine dinucleotide synthetase of Saccharomyces cerevisiae.

نویسندگان

  • M Wu
  • B Repetto
  • D M Glerum
  • A Tzagoloff
چکیده

The FAD1 gene of Saccharomyces cerevisiae has been selected from a genomic library on the basis of its ability to partially correct the respiratory defect of pet mutants previously assigned to complementation group G178. Mutants in this group display a reduced level of flavin adenine dinucleotide (FAD) and an increased level of flavin mononucleotide (FMN) in mitochondria. The restoration of respiratory capability by FAD1 is shown to be due to extragenic suppression. FAD1 codes for an essential yeast protein, since disruption of the gene induces a lethal phenotype. The FAD1 product has been inferred to be yeast FAD synthetase, an enzyme that adenylates FMN to FAD. This conclusion is based on the following evidence. S. cerevisiae transformed with FAD1 on a multicopy plasmid displays an increase in FAD synthetase activity. This is also true when the gene is expressed in Escherichia coli. Lastly, the FAD1 product exhibits low but significant primary sequence similarity to sulfate adenyltransferase, which catalyzes a transfer reaction analogous to that of FAD synthetase. The lower mitochondrial concentration of FAD in G178 mutants is proposed to be caused by an inefficient exchange of external FAD for internal FMN. This is supported by the absence of FAD synthetase activity in yeast mitochondria and the presence of both extramitochondrial and mitochondrial riboflavin kinase, the preceding enzyme in the biosynthetic pathway. A lesion in mitochondrial import of FAD would account for the higher concentration of mitochondrial FMN in the mutant if the transport is catalyzed by an exchange carrier. The ability of FAD1 to suppress impaired transport of FAD is explained by mislocalization of the synthetase in cells harboring multiple copies of the gene. This mechanism of suppression is supported by the presence of mitochondrial FAD synthetase activity in S. cerevisiae transformed with FAD1 on a high-copy-number plasmid but not in mitochondrial of a wild-type strain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation, Subtype Determination, Cloning and Expression of HBsAg Gene from an Iranian Carrier in Saccharomyces cerevisiae

The Hepatitis B Surface antigen ( HBsAg) gene was isolated from an Iranian HBeAg positive carrier by PCR. The gene was cloned in pUC19 for sequencing and pYES2 for expression in Saccharomyces cerevisiae, which pNF1 and pDF3 constructs were made respectively. The sequencing data showed that the isolated HBsAg gene shared more than 90% homology with the ayw subtype. The pDF3 was transferred into ...

متن کامل

CLONING AND EXPRESSION OF HUMAN IFNα2B GENE IN SACCHAROMYCES CEREVISIAE

Interferon is a protein secreted by eucaryotic cells following stimulation by viruses, bacteria, and many other immunogenes. Recent medical studies indicate that interferons have effective role in the treatment of virus infections, immunodeficiency and certain types of cancer such as hairy cell leukaemia (HCL). The aim of the present study is to apply yeast strain for secreting human IFNα2b fol...

متن کامل

Structure-function correlations of two highly conserved motifs in Saccharomyces cerevisiae squalene epoxidase.

Saccharomyces cerevisiae squalene epoxidase contains two highly conserved motifs, 1 and 2, of unknown function. Amino acid substitutions in both regions reduce enzyme activity and/or alter allylamine sensitivity. In the homology model, these motifs flank the flavin adenine dinucleotide cofactor and form part of the interface between cofactor and substrate binding domains.

متن کامل

Isolation and characterization of a Saccharomyces cerevisiae mutant disrupted for the succinate dehydrogenase flavoprotein subunit.

A partial genomic clone of the flavoprotein subunit of the mitochondrial enzyme, succinate dehydrogenase (EC 1.3.99.1) from Saccharomyces cerevisiae has been isolated. The partial clone was used to construct, by targeted gene disruption, a yeast mutant with a defective flavoprotein subunit gene. Submitochondrial membranes from the mutant are defective in activities requiring a functional succin...

متن کامل

Molecular characterization of FMN1, the structural gene for the monofunctional flavokinase of Saccharomyces cerevisiae.

Flavokinase catalyzes the transfer of the gamma-phosphoryl group of ATP to riboflavin to form the flavocoenzyme FMN. Consistent patterns of sequence similarities have identified the open reading frame of unknown function YDR236c as a candidate to encode flavokinase in Saccharomyces cerevisiae. In order to determine whether the product of this gene corresponds to yeast flavokinase, its coding re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 1995